
Environmental Health Perspectives
Vol. 47, pp. 53-63, 1983

Emission of Carcinogenic Components
with Automobile Exhausts
by Ulf Stenberg,* Tomas Alsberg* and
Roger Westerholm*

Different sampling methods for mutagenic polynuclear aromatic hydrocarbons (PAH) are
described. These methods involve either direct sampling of raw exhausts which prior to filtering
are cooled in a condenser, or filter sampling of exhausts diluted in a tunnel. The relevance of
gas-phase PAHs of samples from diluted exhausts is discussed; methods used are either
adsorbents (XAD-2) or cryogenic condensation.
The emission of benzo(a)pyrene and certain other PAHs is reported from vehicles using

different fuels (gasoline, diesel, LPG, alcohols) or different emission control systems. The
emission of some volatiles, such as benzene, ethylene and alkylnitrites, is also presented from
different types of fuels used.

Introduction
During the past 30 years, an increasing interest

has been focused on automobile exhausts and their
potential in causing cancer. The first work within
this research field directed the interest on polynu-
clear aromatic hydrocarbons, a component class
which contains known carcinogens, proved by skin
painting tests on rodents (1). However, by the
development of short-term tests in vitro, the infor-
mation on biologically active components has increased
substantially, and today a significant portion of
research has been assigned to components other
than these hydrocarbons. It is now generally accepted
that PAHs alone contribute only a minor part of the
mutagenicity/carcinogenicityofautomobile exhausts.

Internal combustion engines emit a very complex
mixture of unburnt fuel and newly formed prod-
ucts, and this emission is gaseous as well as
associated to particles. Generally, the composition
of the exhausts is dependent on several factors such
as: engine concept, fuel and oil composition, operat-
ing conditions, etc. Due to legislative regulations
during the 1960s and 1970s, on-line measurements
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have been developed for components such as NO/NO2,
CO and unspecified gaseous hydrocarbons (HC), but
in order to analyze what we nowadays denote as
"unregulated" pollutants, other techniques have to
be used.
The objective of this paper is to summarize

different sampling methods and reported emission
values ofknown or suspected mutagens/carcinogens.
However, it is necessary to emphasize that still
most of these data include only PAH (mostly
represented by one component, e.g., benzo(a)pyrene).
Less information is available on the emission of
derivatives ofPAH or other component classes, but
some of these findings are discussed elsewhere in
this issue (2).

Preconditioning
Prior to a test it is necessary to bring all vehicles

to the same status, i.e., they must be conditioned.
For routine measurements on gaseous emissions like
HC and CO there are standardized methods. How-
ever, for the measurement of PAH no such proce-
dure exists. The PAH are associated to particles,
which makes it probable for deposits on valves,
manifold, exhaust system etc., thus delaying their
emission. To circumvent this "carry-over" effect
between tests, it has been suggested that the
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vehicle must be driven under heavy load for a
certain amount of time before testing. This can
either be accomplished on the road or on a chassis
dynamometer. Due to heat formation it is prefera-
ble to perform the conditioning on the road. In one
investigation (3), attempts were made to compare
the emission, with the deposits of PAH (including
what was found in the lubricating oil), and the
conclusion was that only a minor part (1%) is
deposited in the engine, compared to what is found
in the emission and the lubricating oil.
However, the authors emphasized the need for

the vehicle to achieve a steady state after changing
the fuel, i.e., to have a substantial driving period
with the new fuel before sampling.

Direct Sampling of Raw Exhausts
The early works published from the mid-50s to

the early 70s often involved very bulky sample
equipment which as a consequence necessitated
voluminous extraction and clean up procedures.
Two reasons can be seen for this: large sample
amounts were required for the analytical proce-
dures used and biological tests were performed
with skin painting on whole animals.

In 1954, Kotin et al. (4) published their results
concerning cancer caused by skin painting on mice
with extracts from particulate gasoline engine emis-
sions, and the samples were recovered by filtering
at the actual exhaust temperature. Later, Mittler
and Nicholson (5) enriched some of the gaseous
PAH by condensation of exhausts from both gaso-
line and diesel engines, however, no particulate
emission was recovered.
A general approach was given by Stenburg et al.

(6) when they used condensation before filtering
and applied this technique to different suspected
PAH emission sources, among these being the

automobile. The principle of this method was later
utilized by several investigators and has proven to
be very useful. In 1962, Begeman and Colucci (7)
described a sampling system which enabled them to
collect both gaseous PAH and particle-associated
PAH. They concluded that a large water condenser
prior to the filter package should be sufficient to
collect PAH quantitatively. This trapping system
was dimensioned to enrich the total exhaust volume
from a 364 in.3 (6 L) V-8 engine operated in a
chassis dynamometer.
About 10 years later, Gross used a similar

system, and the chemical analysis of the exhausts
involved benzo(a)anthracene (BaA) and BaP as well
as phenols (8). The investigation included the
impact of parameters such as engine deposits, PAH
content of the fuel and emission control devices on
the emissions. The two latter factors will be further
commented later. The emission of BaP and BaA are
given in Table 1.
A mobile sampling system, in which the equip-

ment was built-in the vehicle and the driving was
performed on ordinary roads, was presented 1966
by Hangebrauck et al. (9). However, the system
had the same disadvantages as those described
earlier, with its cumbersome extraction procedures.
The condensed water increased the back-pressure
in the system, and approximately 5-8% of the
engine power was lost. In which way this may
affect the emission of PAH was not reported.
However, the possibility of obtaining samples from
real conditions should be emphasized. The average
emission from four selected PAHs from vehicles
from the late 50s and the early 60s is given in Table
2.

It is noteworthy that for these previously described
sanmpling systems very little or no information is at
hand concerning optimization arrangements or recov-

ery data. At that time, almost no consideration had

PAH ~~~aTable 1. PAH emissions.

PAH emission, ,g/kmb
Vehicle Ac Vehicle BC Vehicle cc

Low High Low High Low High
PAH fueld PAH fuele PAH fueld PAH fuele PAH fueld PAH fuele

BaP 2.4 5.8 0.7 1.3 0.4 1.0
BaA 4.4 9.0 1.5 2.8 1.0 2.5

aData of Gross (8) condensation before ifiter.
bGross' data originate from different fuel types and deposit levels in the engine and are originally reported as R,g/gallon fuel used.

Values above represent mean values from several fuels, and the recalculations in ,ug/km were made by the authors on an estimated
mileage of 21 miles/gallon from a 7 mode cycle.
CA = vehicle without emission control, 1966; B = vehicle with engine modification, 1968; C = vehicle with engine modification, 1978.
dLow PAH fuel: BaP S 0.1 ppm.
eHigh PAH fuel: BaP = 3 ppm.
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Table 2. Emissions obtained from real conditions.a,h

Emissions, ,ug/km

Vehicle A Vehicle B

Phenanthrene 6.4 33
Pyrene 43 97
BaP 5.3 8.7
Benzo(ghi)perylene 24 37
Coronene 9.3 16

aData of Hangebrauck et al. (9); condensation before filter.
bAverage speed 35 km/hr, maximum speed 51 km/hr; 19 km

route. "A realistic composite of business, arterial and rapid
transit driving." Mean value of four vehicles.

been paid to the possibility for losses of volatile
species from filter, artifact formation or degrada-
tion during sampling.
Grimmer et al. presented in 1972 (10) a construc-

tion for the collection of the total exhaust volume.
They choose a vertical glass condenser with a
cooling area of 0.25 M2. The reason for having a
glass device was the ease of controlling the washing
procedure, and that catalytic effects on the con-
densed material should be lower. An evaluation of
the collecting arrangement was performed and
some general conclusions could be drawn. The
entrance temperature on the filter should not
exceed 35°C if quantitative trapping of three-ring
PAHs was intended. Prolonged sampling, in this
case sampling during repetitive ECE tests, involves
losses of certain species, either due to volatilization
or degradation.
Compared to earlier enrichment methods, this

equipment has been "scaled down" and requires
less laborious procedures. It has been used in large
series of analyses for the assessment of the total
PAH emission from gasoline vehicles. However,
the dimensions of the condenser made it difficult to
handle the emission from a vehicle operated in
another driving cycle, e.g., FTP 1 972, since the
cooling capacity is too low. The Grimmer method
has been extensively used in the Federal Republic
of Germany, especially by car manufacturers such
as Volkswagen (3) and Daimler Benz (11). Grimmer
and co-workers presented in 1975 (12) an investiga-
tion of the emission of PAHs in 100 vehicles. The
vehicles were the 20 most sold in the Federal Repu-
blic of Germany. CO at idling was controlled and set
to 2-3%. No oil was changed prior to sampling, and
the same fuel was used for all vehicles, which were
driven according to the European test procedure.

In summary, Grimmer and Hildebrandt concluded
that 100 pug BaP is emitted per kilogram of fuel
used. This corresponds to approximately 10 jig/km.
However, it must be emphasized that there was a

wide variation within this population of vehicles,
from 1.2 ,ug/km up to 66 rig/km (See also Table 3).
These results were obtained in a cold start

procedure according to certification rules, +20°C.
One vehicle was also tested with cold start at
-150C. In this test, the emissions increased 10-fold. On
the other hand, tests performed with hot start with
the engine temperature at approximately + 80°C,
the PAH emission was decreased by a factor of 2.
These findings are also consistent with results

published by VW (3). The ECE-test consists of four
consecutive cycles of 195 sec. The first cycle con-
taining the cold start comprised 36% of the total
PAH emitted, while the remaining amount was
emitted during cycles two, three and four.
An improved vertical glass condenser has recently

been presented by VW (13) for the trapping of the
total exhaust volume. The system has been used for
both gasoline and diesel vehicles, and the precision
over four determinations is reported to be approx-
imately 10% for most of the analyzed PAH (Table
4).
A report from Fiat (14) presents data from

vehicles with comparatively small engines, such as

Table 3. Emissions in ECE test cycle.a"b

Emissions, ,.g/km

Phenanthrene 288
Pyrene 184
Chrysene 48
BaP 10
BghiP 32
Coronene 20

aData ot Grimmer and Hildebrandt (12); condensation before
filter.
bAverage of 100 vehicles driven in ECE test cycle with cold

start. Recalculations made by the authors based on an estimated
mileage of 10 km/L and a BaP emission of 10 jig/km.

Table 4. Emissions of some selected PAH in 1975 Federal Test
Procedure.""'

Emissions, ,ug/km
Rabbit D

(1978), diesel Golf (1979),
fuel gasoline

Pyrene 70 60
BeP 6 7
BaP 5 6
BghiP 6 4
Coronene 1 1

aData of Kraft and Lies (13); condensation before filter.
bThe data include both gas and particulate phase PAH. Data

given here are taken from logarithmic histograms on a ,ug/mi
basis, reporting the emissions of ten PAH in three different test
procedures.
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Fiat 126 and Fiat 128. The sampling procedure is
not fully described but involves cooling prior to
filtering of the raw exhausts, and the vehicles were
driven in the ECE-test, cold start. The emission
values are summarized in Table 5. This investiga-
tion also concludes that the emission control stan-
dards initiated by ECE in 1971 and 1979 resulted
in a decrease of the PAH emission.
Investigations in Japan using another type of

cooling device before filtering of undiluted exhausts
has been conducted by Handa et al. (15,16). Differ-
ent evaluation experiments are described, and oil
consumption was found to be one of the major
factors to influence the PAH emission. All these
tests were performed in the Japanese 10-mode
driving cycle which simulates city driving. Handa
and co-workers concluded that a very small portion
(1-2%) of the PAH in the gasoline survived the
combustion, and that the emitted PAH mainly
originated from pyrolyzed oil. Table 6 summarizes
some of the results.

Proportional Sampling
The collection of the total exhaust volume is a

method which is time-consuming for subsequent
work and expensive. One way to circumvent the

Table 5. Fiat data on emissions in ECE test.ab

Emissions, pug/km
Fiat 126 FIat 128

Pyrene 90 758
Baa 25 50
BaP 10 5
Coronene NDC 4

aData from Fiat (14); condensation before filter.
bMean value of three tests from vehicles driven in ECE test

cycle with cold start.
CND = not determined.

Table 6. Emissions obtained from Japanese 10 mode city
driving cycle.ab

Emissions, ,ug/km
Vehicle AC Vehicle

New oil Used oild BC

Pyrene 54
BaA 11 19 9
BaP 3.6 6.2 2.5

aData of Handa et al. (15); condensation before filter.
bIncludes both cold and hot start.
CVehicle A = vehicle with 1.6 liter engine; vehicle B = mean

value of five tested vehicles.
dOil used for 3000 km.

large sampling equipment is by using proportional
sampling. This technique allows the handling of a
small sample, and has become an interesting alter-
native with the development of more sensitive
analytical methods and biological tests in vitro. A
proportional sampling system has been described
by Chipman and Massey for the sampling of gaseous
pollutants like HC, CO and NOX (17). However, the
same type of equipment can be used for the
collection of PAH, thus decreasing the needed
condensing area etc. Most proportional sampling
systems use a reference signal which reflects the
amount of emitted exhaust. This is most easily
obtained by measuring the air passing through the
carburetor of the engine. This flow can be deter-
mined by a laminar flow element, thus creating a
reference signal which is compared to a signal
obtained from a similar element in the sample
stream (18).
Stenberg et al. (19) used a proportional system

connected to a glass condenser followed by a glass
fiber filter. The resulting filter temperature was
approximately 50°C. Typically about 10% of the
total exhaust volume was sampled, and the PAH
emission was determined from both FTP-7 2 and
ECE-15 driving cycles. This sampling equipment
was also used in an extensive investigation of 34
vehicles, three makes of the most sold in Sweden
(20). In all, 15 different PAHs were determined
from both particulates and gas phase. Tests were
performed in different driving cycles with both cold
and hot start. One vehicle was also tested at
temperatures below 0°C and the result was in line
with Grimmers', reported previously. The emission
of five selected PAHs is summarized in Table 7,
where also the difference in hot and cold start
procedure can be noticed.
The significant difference (Table 7), in the emis-

sion between makes A and B and C was also
reflected in the CO emission, which was approxi-
mately 50% higher for A. However, it is not
possible, from the results obtained in this investi-
gation, to distinguish a high PAH-emitting vehicle
only from the CO emission pattern. This has also
been concluded from other investigations (8,12),
but a high CO emission value could be used for the
selection for further measurements of the PAH
emission.

All vehicles in this investigation (20) used the
same fuel which was analyzed for PAH content.
These results are given in Table 8. When compar-
ing these values with the emission of PAH, it is
seen that some of these substances are destroyed
during the combustion, while others seem to be
synthesized. Cyclopenteno(cd)pyrene (CPcdP) could
not be detected in the gasoline (-0.01 ppm). Assum-
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Table 7. Emission obtained from FTP, cold start and hot start.a

Emissions, ,g/km

Vehicle Ab Vehicle Bb Vehicle Cb

Cold Hot Cold Hot Cold Hot

CpcdP 51 10 29 11 2 0.5
BaA 25 15 9 8 8 3
BaP 38 7 7 2 4 2
BghiP 44 8 13 6 13 5
Coronene 21 2 16 4 6 3

'Data of Stenberg (20); condensation before filter.
bA = mean value of 12 vehicles; B = mean value of 13 vehicles; C = mean value of 12 vehicles.

ing this amount as input, 1 pug should be emitted
during 1 km driving. However, 50 ptg/km is emitted
by make A. Even make B seems to produce CPcdP
in significant amounts during the combustion while
make C emits one order of magnitude less. The
same pattern can be recognized for coronene, while
BaA and BaP substantially are degraded. Approx-
imately 2-8% of the latter components will survive
the combustion. However, if the combustion occurs
at richer air:fuel ratio these values will increase, as
can be seen for vehicle make A. Table 7 also shows
that the emission decreases overall if the measure-
ments are carried out during hot tests; approxi-
mately 50% less can be expected. As mentioned
previously, the PAH emission will increase sub-
stantially if the vehicles have a start temperature
below 0°C. Temperature-dependent emission-and
this involves not only PAH and derivatives of
these-has been sparcely investigated and ought
to be further elucidated. This is also of concern
regarding emission control devices such as catalytic
converters, since these have to reach a high tem-
perature before they are effective.

Sampling in a Dilution Tunnel
The previously described sampling methods uti-

lized raw gases for the determination of PAH, i.e.,
the emission has not been mixed with ambient air

Table 8. PAH in test fuel.'

PAH concn, Fuel input,
ppm jig/km

CpcdP S 0.01 1
BaA 5.2 520
BaP 0.9 90
BghiP 3.7 370
Coronene S 0.01 1

'Data of Stenberg (20).

where possible instant reactions with the atmo-
sphere might occur. Consequently, one crucial
question is whether measurements of undiluted
(raw) exhausts reflect the actual composition which
continuously exposes the environment.
However, a technique has been developed in

order to simulate reactions of gases and particles
when mixed with ambient air, i.e., a dilution
tunnel. Originally the construction of such an equip-
ment was devoted to the measurement of lead
emissions from gasoline vehicles (21,22). However,
the utility of the dilution tunnel has been extended,
and it is now used in almost all measurements of
automotive emissions, especially for unregulated
pollutants. A figure of a dilution tunnel and a brief
description is given elsewhere in this issue (2).
Another approach to the sampling of PAH was

published by Newhall et al. (23). After dilution of
the exhaust, not in a dilution tunnel, but rather in a
small tube (0.1 x 5 m), approximately 10% of the
exhaust/air mixture was taken through two con-
densers in series, followed by a scrubbing tower
and reaching finally an absolute filter. Recovery
studies of radioactive BaP added to the exhausts
showed a yield better than 90%, and the authors
emphasized that the trapping at subambient tem-
peratures should minimize degradation processes.
Analytical data refer to BaP and BaA, and the
findings indicated that the PAH emission was
influenced by fuel aromaticity as well as of PAH
content of the fuel and lube oil. The emissions
reported are summarized in Table 9.
As mentioned previously, the dilution technique

has now become ubiquitous at measurements of
unregulated pollutants. Although the technique has
been used for a number of years, only limited data
are available on measurements of PAH and related
components. We have only found a few papers
which report PAH emission from transients cycles,
especially from gasoline fueled vehicles. Some of
the results are summarized in Tables 10 and 11.
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Table 9. Emissions obtained from FTP (includes both cold
and hot start).

Emissions, ,ug/km

Vehicle Vehicle Vehicle
Vehicle Ab Bb Cb

BaA 38 20 5
BaP 12 7.5 3.3

aData of Newhall et al. (23); condensation before filter.
bA = vehicle 1969; B = vehicle 1970; C = vehicle 1972,

equipped with air pump and exhaust reactor.

These values are somewhat lower, compared to
results obtained from undiluted exhausts. Howev-
er, they are definitely within the expected range.
In a study from Ford (26) the BaP emission from a
stratified charged engine is reported to be 0.9
,ug/km. This emission was obtained from hot tests
at constant speed of 50 km/hr.
Gas phase trapping is by definition trapping of

components which are not retained by a Teflon
membrane filter at a temperature not higher than
125°F. The enrichment methods employed have
been either adsorbent trapping (18,26) or a cryo
technique (27,28). Lee et al. (26) used XAD-2 traps
on gasoline emissions, and found that a large
portion of three-ring and four-ring PAH were
present in the gas phase. They also reported
problems with background from the adsorbent,
probably due to degradation. A cryo technique has
been briefly described (27) consisting of two wash-
ing flasks immersed in liquid nitrogen, and the
authors concluded that five-ring PAH and larger
molecules were adsorbed to 100% on particles from
gasoline emissions. The other analyzed species
(anthracene, fluoranthene, and pyrene) predomi-
nated in the gas phase. A cryo technique has also
been used by Handa et al. (15), but no information

is given of the relative distribution of gas phase and
particle-associated PAH.
A gas-phase trapping system which can be used

both on diluted and undiluted exhausts is described
elsewhere in this issue (28). The system contains
three condensers (ice/water, C02/ethanol and liquid
nitrogen), and it has been shown that compounds like
phenanthrene and pyrene are present to more than
50% in the gas phase after dilution of gasoline
exhausts. The significance of PAH in the gas phase
will be discussed later, and some comparison with
ambient air concentrations will be presented.

Parameters Which Influence the
Emission

Accumulation of PAH in Oil
PAH from the gasoline and from the combustion

will be enriched in the oil (8,16,29). Experiments
have shown that fresh oil with "virtually no" PAH
at start will increase its content of BaP by three
orders of magnitude during normal use for 10,000
km (29). Handa and co-workers (30) showed a corre-
lation between PAH emission and oil consumption,
and the emissions increased with mileage of the oil.

PAH Content of Fuel
The origin of the PAH found in automobile exhausts

has been investigated by several authors (8,27,31,32).
All results are not consistent, but some conclusions
can be drawn.
The input of PAH with the fuel exceeds by far

the emission with the exhausts. Addition of C8-C10
aromatics in the form of catalytic reformate leads to
increased PAH emissions. Whether this is a func-

Table 10. Emission obtained from FTP.a,b

Emissions, ,ug/km
Diesel Gasoline Gasoline, catalyst

AC Bd AC Bd AC Bd

Pyrene 15 NDe 8 NDe 0.7 NDe
BaP 0.5 3.9 3 3.2 0.1 < 0.1
6 N02-B(a)p < 0.1 NDe 0.9 NDe < 0.1 NDe
1 N02-Pyrene 2 NDe 0.1 NDe < 0.1 NDe

aData of Williams and Swarin (25) and Gibson (24).
bOnly particulate emission from dilution tunnel.
CA = Gibson, one vehicle, hot start.
dB = Williams and Swarin. Diesel: mean value of two vehicles; gasoline: mean value of seven vehicles, Gasoline catalyst: mean value

of four vehicles, cold start.
eND = not determined.
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tion of aromaticity as such, or of high levels ofPAH
in the reformate is not clear.

Addition of a certain PAH to a test fuel will give
an increased emission of this component. High lev-
els of PAH in the fuel will create larger deposits of
these in the combustion chamber and exhaust sys-
tem. This must be taken into account if measure-
ments of different fuels are considered. "Carry-
over" effects can make it impossible to distinguish
any difference in the emission between low and
high PAH level fuels.

Comparison between Differently
Fueled Vehicles
Due to an increasing interest of alternative fuels

in Sweden, this laboratory in co-operation with the
Swedish Motor Fuel Technology Co and Air Pollu-
tion Research Laboratory at Studsvik, Motor Vehi-
cle Section has conducted an investigation on the
PAH emission from different vehicles and fuel com-
binations (33). The samples were taken in a dilution
tunnel and consisted of both particulates and gas

phase. The particulate emission was also screenea
for mutagenicity according to Ames (34). These
results are in part described elsewhere in this issue
(35).
The investigated fuels were as follows: diesel

fuel, standard gasoline, leaded and unleaded, al-
cohol-blended fuels (15% methanol or 23% methanol)
and finally LPG liquefied petroleum gas) and 95%
methanol (5% isopentane). In addition some engine

modifications, such as different compression ratios
and "lean burn combustion" were tested with emission
control devices, e.g., different catalyst systems.
We will here briefly summarize some of the PAH
emission data. The comprehensive results from this
investigation will be published elsewhere (36).
The fuels can roughly be divided into three groups

regarding the mean emission level (filter sampling
only, diluted exhausts). (1) diesel I PAH15 500-1000
jig/km, BaP 10 jig/km; (2) gasoline, M15, E23 E
PAH15 35-170 ,g/km, BaP = 0.5-5.5 ,ug/km; (3)
M95, LPG I PAH15 2-9 ,ug/km, BaP -0.1 ,ug/km.
The "total PAH" represents 15 components as given
in Table 11 and includes particle-associated PAH
only.
For vehicles fueled with LPG and neat methanol,

the emission ofPAH is drastically reduced compared
to standard gasoline vehicles. The emission when
using these fuels is in the same order of magnitude
as for catalyst equipped vehicles.
The difference in the "total" PAH emission between

gasoline and diesel emission is mainly due to a
larger portion of lower molecular weight PAH from
the diesels. These substances are substantially more
particle associated in the diesel emission as com-
pared to gasoline exhausts. For compounds such as
phenanthrene and pyrene it is not sufficient to use
only a particulate sample from gasoline emissions.
Phenanthrene is to more than 90% in the gas phase
after dilution, and the corresponding value for pyrene
is approximately 50%. For diesel emissions approx-
imately 50% ofphenanthrene and 10% ofpyrene will
be in the gas phase.

Table 11. Emissions from FTP, cold start.ab

Emissions, g/fkm
Gasoline Gasoline, catalyst Gasoline M15C Diesel

Phenanthrene 1.7 0.06 2.3 223
Fluoranthene 12.0 0.07 3.3 210
Pyrene 20.0 0.2 6.3 263
BghiFd 6.9 0.07 4.7 48
CPcdP 4.5 0.06 3.2 3.4
BaA 6.2 0.06 2.0 34
Chrysene 6.9 0.2 2.5 46
BbkFe 6.8 0.4 3.0 37
BePf 5.5 0.3 3.2 33
BaP 1.7 0.1 1.1 11
IndPg 1.3 0.3 1.7 14
BghiP 3.9 0.7 5.2 22
Coronene 1.7 0.8 4.4 12

aData of Egeback (36).
bOnly particulate sample from dilution tunnel. Mean value from three tests; diesel two tests.
cGasoline blended with 15% methanol.
dBghiF = Benzo(ghi)fluoranthene.
'BbkF = Benzo(b and k)fluoranthene.
'BeP value includes also benzo(cd)pyrenone.
gInd P = Indeno (1,2,3-cd)pyrene.

59



STENBERG, ALSBERG AND WESTERHOLM

Possible Reactions of Gaseous
PAH
The occurrence of pyrene in the gas phase after

dilution opens some aspects of its fate when it is
emitted into the atmosphere. It is well documented
that some nitroderivatives of pyrene are extremely
potent mutagens, as described elsewhere in this
issue (37). Sampling in a dilution tunnel (according
to the Federal Register) does not reflect real out-
door conditions, however. The temperature in the
tunnel is approximately 30-40'C, which during most
conditions will prevent the dew point of water from
being reached. Consequently, the particles will not
adsorb as much water as they would with a lower
temperature and the formation of water droplets
will also be lower. The condensed water from auto-
mobile exhausts is acidic (pH 2-4), most likely due
to nitric and nitrous acids. Pitts has shown that
vehicle exhausts contain both HNO2 and HNO3
(37). This acid precipitation could contribute to the
anticipated formation of nitrated species and this
aspect should be considered if the temperature is
lowered below the dew point of water.

Condensation techniques for the enrichment of
gaseous components in automobile exhausts will
produce acidic solutions, and most likely this will
also occur in the atmosphere when condensation
takes place on the ambient particles. Nitration of
polycyclics in water solutions can rather easily be
performed during experimental conditions (37,38).
However, very little is known about whether there
is a corresponding nitration process in ambient air.
The detected amount of nitrated polycyclics in ambi-
ent air is low (24,39), and it may be questioned
whether these are formed during the sampling pro-
cedure. Doubt has also been raised in the case of
sampling automobile exhausts, especially for con-
densation processes (2,40): i.e., the mutagenicity
found downstream of filter samples taken from a
dilution tunnel could be attributed to compounds
formed in the condensate and actually not occurring
in the emission.
Work is under progress in our laboratory in

collaboration with the Division of Toxicology Genet-
ics at Wallenberg Laboratory to identify mutagenic
species found in the gas-phase condensates. The
question whether these compounds are sampling
artifacts must be considered in view of that stan-
dard sampling in a dilution tunnel prevents precipi-
tation of acids and only reflects what will be adsorbed
on the particles during favourable conditions. Re-
search in this field with different dilution tempera-
tures and ratios is strongly needed, especially in
conjunction with biological tests and analytical chem-
istry with fingerprint capability.

Gaseous Emissions of Some
Selected Components

All previously mentioned data of the emission
from vehicles involved only polycyclics of which the
major part is associated to the particle emission.
However, a vast amount of the emission from vehi-
cles belong to a lower molecular range MW - 150,
and are either combustion products or unburnt fuel.
These substances are gaseous under normal ambi-
ent conditions. They are mostly hydrocarbons, i.e.,
olefins, aromatics or aliphatics but minor parts are
oxidized compounds such as aldehydes, phenols,
and carboxylic acids. It is beyond the scope of this
paper to list all components, but some of these
gaseous components might be of significant interest
due to their health effects. In Table 12 some com-
ponents are listed with their expected emission
ranges.
Regarding specially fueled vehicles such as meth-

anol or ethanol, especially oxidized species should
be expected, but also products from reaction with
nitrogen oxides. Methyl nitrite, however, has also
been determined in the emissions from vehicles
using ordinary gasoline. This is not the case for
ethyl nitrite, which was found only in the emissions
from the ethanol blended fuel. Vehicles using a 95%
methanol/5% isopentane blend have a substantial
emission of MeONO (5 mg/km) and MeOH, (3-4
mg/km). The emission of formaldehyde from alco-
holic fuels is also increased compared to ordinary
gasoline (41).

Fingerprint Analysis of Source and
Recipient
Recent development of capillary gas chromatog-

raphy has facilitated the separation of PAH and
PAH derivatives with an improved resolution, and
with this technique it is possible to obtain a "finger-

Table 12. Emissions obtained from FTP, cold start.'

Gaseous emissions, mg/km
Gasoline,

Vehicle Gasoline catalyst
Benzene 50-100 1-10
Toluene 100-200 2-20
Ethylene 100 10
Propylene 50 5
Me-ONOb 100-150 30-50
Et-ONOc 400-600 ND

'Data of Egeback (36).
bMe-ONO = Methyl nitrite, ,ug/km.
CEt-ONO = Ethyl nitrite, pLg/km. Note: emission only found

from vehicle using gasoline blended with 23% ethanol.
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print" of the emission of interest. Figures 1 and 2
give examples of typical gas chromatograms from
gasoline exhausts and ambient particulate matter.
Elsewhere (42), PAH emission profiles from other
sources are illustrated. A large number of components

0 tt.
.c

FIGURE 1. Capillary gas chromatogram of PAH fraction (MW
¢ 202) from gasoline automobile exhausts. Gas and particulate
phase, condensation before filter. Sample clean-up: liquid/
liquid extraction with dimethylformamide-water (9:1) and
cyclohexane, silica gel chromatography, solid phase deac-
tivated with 10% water, eluted with cyclohexane, finally
Sephadex LH-20 gel chromatography, elution with isopro-
panol. Peak assignments: (1) fluoranthene; (2) pyrene; (3)
benzo(ghi)fluoranthene; (4) cyclopenteno(cd)pyrene; (5) ben-
zo(a)anthracene; (6) chrysene; (7) benzo(b,k)fluoranthene;
(8) benzo(e)pyrene; (9)benzo(a)pyrene; (10) indeno(1,2,3-cd)-
fluoranthene; (11) ideno (1,2,3-cd)pyrene; (12) benzo(ghi)-
perylene; (13) coronene; IS = internal standard (13, -
binaphthyl).

H~~ii~~~~~~~~~~~i

FIGURE 2. Capillary gas chromatogram of PAH fraction from
airbore particulate matter from downtown Stockholm. Sam-
ple clean-up as in Figure 1, but without Sephadex LH-20 gel
chromatography. Peak assignments as in Fig. 1. IS = internal
standard (1B, 1-binaphthyl and p-quarterphenyl).

can be separated, and the relative concentrations of
specific components are used to trace the emission
source. As previously concluded, a predominant
part of the PAH with molecular weights : 226 are
associated with the particle phase.

Although PAH will undergo atmospheric reac-
tions, as has been demonstrated elsewhere in this
issue (38,43), it is still possible to recognize tvpical
emission patterns. The approach to use gas chro-
matographic profiles is exemplified in Figure 3. The
amounts are given on a relative basis [benzo(e)pyrei-e
= 1], in order to obtain comparative figures. The
amount of three- and four-ring PAH found in the
gaseous state in the atmosphere has been investi-
gated (44-46), and a conclusion is that phenanthrene,
anthracene, fluoranthene and pyrene are more than
50% in the gas phase. For other four-ring PAHs,
such as benzo(a)anthracene and chrysene, the amount
found in the gas phase is lower; 10-15% is reported.
Handa et al. (44) found experimentally that the
amount of these "volatile" PAH in the gas phase
was dependent of the flow rate of the sampling
system. This was pronounced for four-ring PAHs
and the phenomenon might be due to evaporation
from the retained particles in front of the gas
trapping system. Figure 3 demonstrates that the
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FIGURE 3. PAH profile from airborne particles and auto-
mobile exhausts: (A) S:t Eriksgatan, temperature 20°C,
LIB sampler, 250 mi3, 16 hr, n = 12; (m) Norra Stations-
gatan, temperature 0C, hi-vol sampler, 200-400 mi3, 3-6 hr,
n = 7; (e) automobile exhausts from gasoline vehicles,
gas and particulate phase, condensation before filter, n = 31.
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pattern of PAH with MW - 252 is similar for
particles from automobile exhausts and ambient
air. However, since the automobile exhausts sam-
ple also contains gas phase, there is a poor correla-
tion between more volatile PAH which are not
exclusively associated to the ambient air particles.

Conclusions
Emission rates ofPAH have been determined by

several investigators during the past 30 years. These
substances are associated with both particulate and
gaseous emissions, and they are considered to be
partly responsible for the carcinogenic/mutagenic
properties of vehicle emissions. Many of these early
investigators focused the interest on one or a few
specific components; and benzo(a)pyrene (BaP) is
the most frequently analyzed.
The emission of PAH is dependent on several

factors. Among these are: air/fuel ratio (a fuel-rich
combustion increases the emission), starting tem-
perature of the engine which affects the A/F ratio
and emission control devices. Driving conditions
seem to have little effect, while mileage of the
engine is ofimportance, essentially due to an increased
oil consumption.
Some emission factors can be given. These values

refer only to light duty vehicles equipped with
standard engines. For gasoline vehicles, 1-10 ,ug
BaP/km; for gasoline vehicles with a catalyst, 0.1-1
,ug BaP/km; for diesel vehicles, 1-10 ,ug BaP/km.
During cold periods (<0°C), an increased emission
should be expected, more pronounced for gasoline
vehicles, by a factor of approximately five times.
This effect occurs during the first 3-4 km.

Alcohol blended fuels do not seem to have a
significant influence on the PAH emission, while
high aromaticity ofthe fuel may lead to an increased
emis sion of PAH, probably due to a corresponding
increase of the PAH content of the fuel.
For gaseous components, which may either be

directly harmful for the health, such as benzene, or
via atmospheric reactions produce biologically active
components, such as olefins, the following emission
factors for gasoline vehicles could be estimated:
benzene, 50-150 mg/km; benzene (catalyst), 1-10
mg/km; ethylene, 50-100 mg/km; ethylene (catalyst),
5-10 mg/km. Here "catalyst" refers to new catalyst,
three-way/closed loop.

Derivatives of PAH and heterocyclics is of spe-
cial importance with reference to diesel vehicles.
Among these are oxidized components such as
ketones, quinones, anhydrides, acids and aldehydes,
as well as sulfur- and nitrogen-containing polycyc-
lics. The emission of these constituents are not
determined as completely as PAH, but some pre-

liminary data can be given. These values are based
on weight measurements from HPLC separation of
a particulate extract. Data are reported for the
aromatic fraction which contains three rings or
more (47): PAH, 10%; oxy-PAH, 19%; heterocyclics
+ acids, 71%.
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